
Preprint
UCRL-JC-149711

SUNDIALS: Suite of
NonIinear/Dlfferental/ALge
braic Equation Solvers

A. C. Hindmarsh

This article was submitted to ACTS Toolkit Workshop, Berkeley,
CA, September 4-7, 2002

August 1 2002

U.S. Department of Energy

Laboratory

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not lnfringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited or
reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at http:/ /www.doc.vov/bridpe - -

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: rePorts@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail orders@ntis.fedworld.gov
Online ordering: http:/ / www.ntis.gov/ - ordering.htm -

OR

Lawrence Livermore National Laboratory
Technical Information Department's Digital Library

http:/ / www.llnl.gov/ tid/ Library.htm1

.. . ~ ". . .

mailto:rePorts@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov
http://www.llnl.gov

SUNDIALS: Suite of
Nonlinear/DIfferential/ALgebraic equation Solvers

Alan C. Hindmarsh
Lawrence Livermore National Laboratory

Preprint

UCRL- JC-

August 2002

This work was performed under the auspices of the U S . Department of
Energy by University of California Lawrence Livermore National Laboratory
under contract No. W-7405-Eng-48.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, ex-
press or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily con-
stitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

This is a preprint of a presentation to be given at the ACTS Toolkit Workshop,
LBNL, Berkeley, September 4-7, 2002. Since changes may be made before
publication, this preprint is made available with the understanding that it will
not be cited or reproduced without the permission of the author.

SUNDIALS: Suite of
Nonlinear/ DIff erent ial/ALgebraic equation

Solvers

Alan C. Hindmarsh

Collaborators:
Peter Brown, Keith Grant, Steven Lee,

Radu Serban, Dan Shumaker, Allan Taylor,
Carol Woodward

Nonlinear Solvers & Differential Eqns. Project
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

ACTS Toolkit Workshop
6 September 2002

Background

LLNL has a long history of R & D in ODE methods
and software, and closely related areas, with emphasis on
applications to PDEs.

Popular Fortran solvers written at LLNL:
a VODE: ODE initial value problems for stiff/nonstiff

systems, with direct solution of linear systems
[Brown, Byrne, Hindmarsh]

solution of linear systems (GMRES iteration)
[Brown, Byrne, Hindmarsh]

a VODPK: Variant of VODE with preconditioned Krylov

a NKSOL: Newton-Krylov (GMRES) solver for nonlin-
ear algebraic systems [Brown & Saad]

a DASPK: Differential-algebraic system solver (from
DASSL) with direct and preconditioned Krylov solu-
tion of linear systems [Brown, Hindmarsh, Petzold]

Areas of special interest in recent years:
a parallel solution of large problems

sensitivity of solution w.r.t. model parameters

2

Background (cont .)

Starting in 1993, the push to solve large systems in par-
allel motivated work to write or rewrite solvers in C.

The first result:

CVODE = C rewrite of VODE + VODPK, serial
[Cohen & Hindmarsh, 19941

Next result:

PVODE = parallel extension of CVODE [1998]

Current naming: One solver, CVODE, in two versions -
serial and parallel

3

CVODE

IVP: I j = f (t , y) , y(t0) = Yo, Y E RN

Methods: variable-order , variable-step
0 BDF = Backward Differentiation Formulas (stiff)

Implicit Adams (nonstiff)

(Fixed-Leading Coeff. form)

Nonlinear systems solved by:
Newton (stiff)

0 Functional Iteration (nonstiff)

Linear systems solved by:
0 Dense or band direct solver (serial version only)

0 SPGMR = Scaled Preconditioned GMRES:
unrestarted, matrix-free, left/right preconditioning,
user routines for preconditioning setup/solve

Code organization completely redone:
0 Memory allocation

0 Linear solver modules separate from core integrator

0 Each linear solver has interface + generic solver

Separate module of vector kernels (linear sums, dot
products, norms, etc.) on vectors of type N-Vector

4

CVODE Organization

CVDENSE CVBAND CVDIAG CVSPGMR

Core Integrator CVode

I I c . 1 DENSE 1 1 BAND I
I I I I

Generic Linear Solvers
I ITERATIV

NVECTOR

SUNDIALS TY PS

SUNDIALSMATH

5

The SUNDIALS NVECTOR Module

Package includes three submodules:

0 Generic NVECTOR

NVECTOR-SERIAL

a NVECTOR-PARALLEL

The Generic NVECTOR module defines:

0 a machine environment structure MJEnv

0 a data-independent N-Vector type

(in MJEnv) a set of operations

0 a set of kernels = wrappers around actual kernels
accessed through the operation set

Each NVECTOR implementation (or any user-defined
NVECTOR module) defines:

0 content field of MJEnv

0 content field of N-Vector

0 set of implemented vector kernels

0 function to construct M-Env and fill list of operations

6

NVECTOR (cont.)

In NVECTOR-PARALLEL,
e the M-Env content field includes
- local vector length
- global vector length
- MPI communicator

a the N-Vector content field includes
- local vector length
- global vector length
- the local data array

All N-vectors are distributed the same way.

If neither package NVECTOR implementation is suitable,
user can provide one. E.g. substitute a more complex
data structure.

7

Parallel CVODE Usage

Unlike the user of the Fortran solvers, the CVODE user
calls several routines for various parts of solution process.

Set local vector length

machEnv = M_EnvIni tParal le l (. . .) :
initialize NVECTOR-PARALLEL

Set initial values of y (type N-Vector)

mem = CVodeMalloc(. . .) : initialize CVODE

CVSpgmr(. . .) : if Newton, specify SPGMR and
preconditioner setup and solve routines

f o r (t o u t = . . .) i e r = CVode(. . .) : integrate

CVodeFree: free CVODE memory

Errors are controlled via user input tolerances:

r t o l = scalar relative tolerance

at01 = absolute tolerance = scalar or vector

Resulting error weights rtollyZl+atolz are also used
to scale GMRES.

8

CVODE - Preconditioning

Preconditioner P must approximate Newton matrix, yet
be reasonably efficient to evaluate and solve.

From linear multistep method,

where jln = f (tn, yn) (h = stepsize, ,80 = BDF coeff.),
the Newton matrix is I - y J, J = d f /ay, y = hPo.

Typical P is I - yJ with J - J , possibly a crude ap-
proximation.

yn = h,80zjn+ sum of known past values,

Treatment of P is in two phases:
evaluate and preprocess P (infrequently)

0 solve systems Px = b (frequently)
User can save J and reuse it when y changes (trading
computation for storage), as directed by CVODE.

The user must supply routines for setup and solve of P ,
but the package offers help:

Example illustrates operator-split preconditioner for
reaction-diffusion systems

0 BBD module supplied (parallel version) : Band-Block-
Diagonal preconditioner

Other linear solvers useful, given choice of J .
9

Parallel CVODE - BBD Preconditioner

Directed at PDE-based problems, using Domain Decom-
position

Time-dependent PDE system, with spatial discretization,
gives ODE system zj = f (t , y) .

Decompose domain into M non-overlapping subdomains.

DD induces block form y = (yl, 7 y ~) , same for f -

Use this distribution for CVODE on M processors.

But f m (t , y) depends on both ym and ghost cell data from
other ym/, typically in a local manner.

Build preconditioner P by:
a computing d f , / d y m (ignore coupling)

a replacing f by g z f (g = f allowed)

E.g., g may have smaller set of ghost cell data.

On processor m, use Jm = banded difference quotient
approximation to dgm/dym, then

P = diag[P1, , P M] , Pm = Im - yJm

Solve Px = b by band LU and backsolve ops. on each
processor (setup = evaluation + LU, solve = backsolve).

10

BBD Preconditioner (cont .)

User supplies g as two routines:

0 gcomm: inter-processor communication of data needed
to evaluate gm

0 glocal : evaluate gm on processor m

User also supplies:

0 half-bandwidths ml ,mu of band matrix Jm

0 half-bandwidths mldq,mudq for use in D.Q. algorithm
(cost of Jm is mldq+mudq+2 evaluations of gm)

(1) ml ,mu may be smaller than mldq,mudq - trading
lower matrix costs for slower convergence.

(2) Both pairs of half-bandwidths may be less than the
true values for dgm/dym, for efficiency.

(3) Both pairs may depend on m.

11

CVODE - Fortran/C Interfaces

Fortran applications are accommodated, via a set of
interface routines.

(Fortran user) ++ (interfaces) +--+ CVODE

Cross-language calls go in both directions:

Fortran Main --+ interfaces to solver routines

Solver routines --+ interfaces to user’s f etc.

For portability, all user routines have fixed names.

Small examples are provided.

12

KINSOL

Solves F(u) = 0, F : R" -+ R", given a guess uo.

C rewrite of Fortran NKSOL [Brown &z Saad]

Method is Inexact Newton:

Newton correction equation JAun = -F(un) is solved
only approximately, with a preconditioned Krylov method.

Krylov solver: SPGMR = Scaled Precond. GMRES
restarts allowed

0 preconditioning on the right: (JP-')(PA) = -F

Krylov iteration requires matrix-vector products J(u)v,
done by:

user-supplied routine, or

0 difference quotient [F(u + ov) - F(u)]/a

Choice of Newton strategies:

0 Inexact Newton

Inexact Newton with Linesearch/Backtrack

(NKSOL also had a Dogleg Method; KINSOL does not.)

13

KINSOL (cont.)

Optional inequality constraints: ui > o or uz < o

Error controls:

1. Newton stopping test: IJDFF(u~)JI < f tol with input
scaling DF for F and input tolerance f to l .

2. Krylov stopping test: 1 1 JA,+FII < qklJFIJ with three
choices:

0 q k = constant

0 two 'forcing term' choices of Eisenstat/Walker [1996]

3. For step control and choice of 0, user must also supply
Du = scaling for u.

14

KINSOL - BBD Preconditioner

Package includes band-block-diagonal preconditioner
module analogous to CVODE’s BBD.

Defined via g ==: F:
P = diag(P1, , P&r] , Pm = Jm E agm/aym
Jm is banded, via difference quotients, with user-supplied
half-bandwidths for D.Q. alg. and retained matrix.

15

KINSOL Code Organization

Same basic organization as CVODE
(only one linear solver choice at present)

Shared modules:

0 generic SPGMR solver

0 NVECTOR module

User supplies routines for:

O F

0 P setup and solve (optional)

0 J v product (optional)

0 gcomm, @oca1 (for BBD preconditioner)

Examples provided with user preconditioner and BBD

Package of Fortran/C interfaces provided

16

IDA

Solves Initial Value Problem for DAE system
F (t , Y1 Y ') = 0,
F : R x R" x R" -+ RN,
given yo, yb at t = to

C rewrite of Fortran DASPK [Brown/Hindmarsh/Petzold]

Met hod: Variable-order BDF, variable-coefficient
(Fixed-Leading-Coefficient form)

Newton corrections involve Newton matrix

J = d F / d y --I- adF/dy'

a = ao/h (h = stepsize, a0 =BDF coeff.)

Linear systems solved by:

0 direct solve (dense or banded, user or internal J)
(serial version only)

0 SPGMR = Scaled Precond. GMRES
- restarts allowed
- preconditioning on left: (P-' J) (A y) = - P-lF
- user routines for P setup & solve

Optional inequality constraints:
yz > o or yz < o or yz > o or yz < o - -

17

IDA - Initial Condition Calculation

User input yo, yb may or may not be consistent (F = 0),
but must be for integration to succeed.

Optional user-callable routine solves for consistent values,
for two classes of problems:

0 Semi-explicit index4 systems, differential components

All of yb specified, yo unknown

of yo known, algebraic components unknown

IDA solves F(t0, yo, yb) = 0 for unknown components of
yo and yh, using

0 Newton iteration with Linesearch

0 existing linear system solver machinery (+ tricks)

18

IDA - BBD Preconditioner
~

Package includes Band-Block-Diagonal preconditioner
module analogous to CVODE’s BBD.

Defined via G F=: F :

P = diag[P1, , P M]

Jm is banded, via difference quotients, with
half-bandwidths for D.Q. alg. and retained

user-supplied
matrix.

19

IDA - Code Organization

Same basic organization as CVODE

Shared modules:

0 generic dense, band, SPGMR solvers

0 NVECTOR module

User supplies routines for:

O F

0 J for direct solve (optional)

P setup and solve for SPGMR (optional)

gcomm, @oca1 (for BBD preconditioner)

Examples provided with user preconditioner and BBD

20

Sensitivity Analysis

In addition to the solution y or u, we want its sensitivity
(first-order) with respect to parameters in the problem
(or initial conditions).

(1) ODES.

If P = (P l , . . ,Pm) and Y = f (t , Y , P) , Y (t 0) = Yo(P) ,
we want s = d y / a p (N x m).

Each column si = ay/api satisfies another ODE

with initial values si(t0) = dyO/dpi.

S ensPVOD E [Lee/Hindmarsh/Brown, 20001 integrates
extended ODE system for Y = (y , wl, 7 wm), where
wi = pisi and pi = scale factor N pi.

Evaluation of W; = pisi done by difference quotients
(range of choices) or by Automatic Differentiation.

Jacobian of extended system, of size N(m+ l), is approx-
imated by diag[J, , J] . Appropriate preconditioner is
diag[P, - , PI. Linear systems involve added solve op-
erations but no added matrix setup operations.

21

ODE Sensitivity Analysis (cant .)

CVODES [Serban/Hindmarsh, 20021 has two modes:

integrate extended system for Y = (y, SI, , s,)
(2 new options for staggered corrector iteration)

integrate for y; integrate adjoint system backward

Adjoint (backward) sensitivity analysis:

Given g (t , y, p) such that (ag/dp)l t+ is desired, - .

integrate from t f to to the adjoint system
*

, k = - J * p , p (t f) = (2)
Then

= p*(to)s(to) + g p* fpd t + gPlt=tf

Regenerate y (t) values, needed in RHS, via check-point
scheme.

22

Sensitivity Analysis (cont .)

(2) Nonlinear Systems.

F (u , p) = 0, s = a u p p +-

SensKINSOL [Grant/Hindmarsh/Taylor, 20001 solves
for u (if not done already by KINSOL), then solves linear
systems for wi = pisi.

(3) DAEs.

= o -si + -s* + - d F dF f dF
dY dy' apa

SensIDA [Lee/Hindmarsh,2001] integrates extended DAE
system for Y = (y? w1? , wm), where wi = pisi.

Newton matrix of extended system is approximated by
diag[J, ? J] (J = Newton matrix of original system).

23

Applications

* Parallel CVODE is being used in a parallel 3D tokamak
turbulence model in LLNL’s Magnetic Fusion Energy Di-
vision. A typical run has 7 unknowns on a 64 x 64 x 40
mesh, with up to 60 processors.

* KINSOL with a HYPRE Multigrid preconditioner is
being applied within LLNL/CASC to solve a nonlinear
Richards equation for pressures in porous media flows.
Fully scalable solution performance obtained on up to 225
processors of ASCI Blue. SensKINSOL used to quantify
uncertainty in these groundwater problems.

* CVODE, KINSOL, IDA, with MG preconditioner, are
being used to solve 3D neutral particle transport problems
within LLNL/CASC. Scalable performance obtained on
up to 5800 processors on ASCI Red.

* SensPVODE, SensKINSOL, and SensIDA have been
used to determine solution sensitivities of neutral particle
transport applications at LLNL w.r.t. various material
properties, for solution uncertainty quantification.

* IDA and SensIDA are being used in a cloud and aerosol
microphysics model at LLNL to study cloud formation
processes, in study of model parameter sensitivity.

24

Sources and References

Publications listed are available from the ACTS Toolkit
page and/or the CASC/NSDE Project website,

www. llnl .gov/CASC/nsde/

Sources for CVODE, CVODES, KINSOL, IDA are avail-
able at the LLNL/CASC Software Download Site,

www. llnl .gov/CAS C/download/download-home. html

[l] S. D. Cohen and A. C. Hindmarsh, “CVODE User
Guide,” LLNL Report UCRL-MA-118618, Sept. 1994.

[2] Scott D. Cohen and Alan C. Hindmarsh, “CVODE, a
Stiff/Nonstiff ODE Solver in C,” Computers in Physics,
vol. 10, no. 2 (March/April 1996), pp. 138-143.

[3] Michael R. Wittman, “Testing of PVODE, a Parallel
ODE Solver,” LLNL Report UCRL-ID-125562, August
1996. Compares parallel CVODE with SHMEM and two
versions of MPI.

[4] George D. Byrne and Alan C. Hindmarsh, “User Docu-
mentation for PVODE, An ODE Solver for Parallel Com-
puters,” LLNL Report UCRL-ID-130884, May 1998.

[5] Allan G. Taylor and Alan C. Hindmarsh, “User Doc-
umentation for KINSOL, A Nonlinear Solver for Sequen-

25

tial and Parallel Computers,” LLNL Report UCRL-ID-
131185, July 1998.

[6] George D. Byrne and Alan C. Hindmarsh, “PVODE,
An ODE Solver for Parallel Computers,” in Int. J. High
Perf. Comput. Applic., vol. 13, no. 4 (1999), pp. 354-
365.

[7] Alan C. Hindmarsh and Allan G. Taylor, “User Doc-
umentation for IDA, a Differential-Algebraic Equation
Solver for Sequential and Parallel Computers,” LLNL Re-
port UCRL-MA-136910, December 1999.

[8] Alan
rit hms” ,
Detailed

[9] Alan

C. Hindmarsh, “The PVODE and IDA Algo-
LLNL Report UCRL-ID-141558, December 2000.
algorithm descriptions.

C. Hindmarsh and Radu Serban, “User Docu-
mentation for CVODES, An ODE Solver with Sensitivity
Analysis Capabilities,” LLNL Report UCRL-MA-148813,
July 2002.

26

